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Abstract

Vision-based hand gesture interfaces require fast and ex-
tremely robust hand detection. Here, we study view-specific
hand posture detection with an object recognition method
recently proposed by Viola and Jones. Training with this
method is computationally very expensive, prohibiting the
evaluation of many hand appearances for their suitability
to detection. As one contribution of this paper, we present a
frequency analysis-based method for instantaneous estima-
tion of class separability, without the need for any training.
We built detectors for the most promising candidates, their
receiver operating characteristics confirming the estimates.
Next, we found that classification accuracy increases with
a more expressive feature type. As a third contribution, we
show that further optimization of training parameters yields
additional detection rate improvements. In summary, we
present a systematic approach to building an extremely ro-
bust hand appearance detector, providing an important step
towards easily deployable and reliable vision-based hand
gesture interfaces.

1 Introduction

Vision-based interfaces (VBI) are gaining much interest re-
cently, maybe best illustrated by the commercial success of
Sony’s Eye Toy, an accessory for the company’s PlaySta-
tion 2: a set-top camera recognizes full-body motions and
projects the player directly into the game. However, more
fine-grained control, such as with hand gesture recognition,
has not yet reached the same level of robustness and reliabil-
ity. Outdoor and mobile environments in particular present
additional difficulties due to camera motion and their vari-
ability in backgrounds and lighting conditions. In prior
work [7], we presented a mobile VBI that allows control of
a wearable computer entirely with hand gesture commands.
A collection of recently proposed and novel methods en-
ables hand detection, tracking, and posture recognition for
truly interactive interfaces, realized with a head-worn cam-
era and display. For these vision-based hand gesture inter-
faces it is of tremendous importance to make available a
background-invariant, lighting-insensitive, and person- and
camera-independent classifier to reliably detect a human’s

most important manipulative tool, the hand. We will subse-
quently call these classifiers “detectors.”

Hand appearances – the combinations of postures and
the directions from which they are viewed – differ in their
potential for classification from background and other ob-
jects. In order to pick the appearance with the best sepa-
rability from background (that is, the one that allows de-
tectors to achieve the most robust performance), one could
train a detector for each combination and a posteriori ana-
lyze their performance. We employ a method that is cur-
rently considered the fastest and most accurate pattern de-
tection method for faces in monocular grey-level images
(Viola and Jones [10]). Unfortunately, the training for this
method takes far too long to explore all possible combina-
tions for their suitability to detection.

We introduce an a priori estimate of detector perfor-
mance. The estimator is based on frequency spectrum anal-
ysis and estimates the amount of grey-level variation in the
object’s appearance. It operates on a prototypical example
image of the object to be detected, alleviating the need for
extensive data collection. To compare its prediction with
actual detection performance, we trained detectors for six
hand posture/view combinations. We are interested in the
maximal detection rate for a given false positive rate, the
“entropy” of the appearance. We found vast differences
in detectability with Viola&Jones’ method, justifying our
methodological approach to find a good VBI initialization
gesture. The depth and volume of this study are also novel;
we used a total of 2300 hand images. Receiver operating
characteristic (ROC) curves are given for all experiments.

The best detector we obtained, combined with skin color
verification, achieves outstanding performance in practical
application, indoors and outdoors: about one false positive
in 100,000 frames. Given that the hand is in the right pos-
ture and not extremely over-exposed, it is reliably recog-
nized within a couple frames. This is used to bootstrap the
set of subsequent tracking and recognition methods for the
wearable interface [7]: the system initializes after the user
performs a particular gesture. It then tracks her hand and
recognizes a number of key gestures.

The paper is organized as follows. First, we review
related work and summarize the Viola-Jones detection
method in section 2. Section 3 details our frequency
analysis-based estimation of class separability. The actual
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detector construction, along with details about data col-
lection, evaluation, and performance improvements, is de-
scribed in section 4. Conclusions are drawn in section 5.

2. Related work
We briefly review approaches to hand and object detection,
including the pattern detection method that was the basis for
this work.

Most attempts to detect hands from video place restric-
tions on the environment. For example, skin color is surpris-
ingly uniform [9, 6], so color-based hand detection is pos-
sible [13]. However, this by itself is not a reliable modality.
Hands have to be distinguished from other skin-colored ob-
jects and there are cases of insufficient lighting conditions,
such as colored light or grey-level images. Motion flow in-
formation is another modality that can fill this gap under
certain conditions [2], but for example for non-stationary
cameras this approach becomes increasingly difficult and
less reliable. Statistical information about hand locations
is effective when used as a prior probability [8], but it re-
quires application-specific training. Shape models gener-
ally perform well if there is sufficient contrast between the
background and the object [1], but they have problems espe-
cially with concave objects and cluttered backgrounds. Par-
ticle filtering [4] makes shape models more robust to back-
ground noise, but shape-based methods are better suited for
tracking an object once it has been acquired and they yield
only limited results for detection tasks. Cameras that cap-
ture depth or thermal infrared images provide additional in-
formation that makes hand detection much easier, yet they
require specialized and frequently expensive hardware.

Little work has been done on finding hands in grey-
level images based on their appearance and texture. Wu
and Huang [11] investigated the suitability of a number of
classification methods for the purpose of view-independent
hand posture recognition. The objective was to classify
hand poses, however, so detection performance without the
help of skin color information was not considered. Face
detection on the other hand has attracted a great amount of
interest [12, 3] and many methods relying on shape, texture,
and/or temporal information have been described. Texture-
based approaches in particular have the potential to yield
the best results in varying image environments since they
can operate on still images and even cope with partial ob-
ject occlusions.

2.1. Integration templates
To the best of our knowledge, view-dependent, posture-
specific localization of hands in unconstrained grey-level
images has not been demonstrated. To achieve this, we
use a very fast and accurate learning-based object detection
method that was recently proposed and extended by Viola

and Jones [10, 5], primarily applied to face detection. It op-
erates on so-called integral images in which each image ele-
ment contains the sum of the values of all pixels to its upper
left, also known as “data cubes” in the database community.
This single-pass precomputation step allows for subsequent
constant-time summation of arbitrary rectangular areas, or
“rectangular features.” During training, “weak” classifiers
are selected with AdaBoost, each of them a pixel sum com-
parison between two or more areas (see fig. 1). Hundreds of
these classifiers are then arranged in a multi-stage cascade
(termed “detector”), together achieving excellent classifica-
tion performance. Due to an exhaustive-search component,
training a cascade takes on the order of 24 hours on a 30+
node PC cluster.

Figure 1: Images a)-c) show one instance of each traditional
feature type. For example, type a) can vary in overall width
and height as well as in its width ratio of the two rectangular
areas, but their heights must not differ. d) and e) are two
instances of our new type that allows for almost arbitrary
area comparisons since the rectangles’ locations and sizes
are less constrained; even overlapping areas are permitted.
See also subsection 4.4.

At detection time, the entire image is scanned at multiple
scales. For example, a template of size 25x25 pixels, swept
across a 640x480 image pixel by pixel, then enlarged in size
by 25%, swept again, enlarged, swept, etc. yields 355614
classifications. Every stage of the cascade has to classify
the area positive for an overall positive match. This lazy
successive cascade evaluation, together with the rectangular
features’ constant-time property, allows the detector to run
fast enough for the low latency requirements of real-time
object detection.

Overall, the method’s accuracy and speed performance,
as well as its sole reliance on grey-level images, make it
very attractive for hand detection. For practical application
outside the context of this paper, we combined it with skin
color information for even improved performance.

3. Separability estimation with
frequency spectrum analysis

Since training a detector for every possible hand posture (in
order to find the best-performing one) is prohibitively ex-
pensive, we propose in this section a method to quickly es-
timate the classification potential, based on only a few train-
ing images for each posture. We investigated eight postures



closed sidepoint victory open Lpalm Lback grab fist

0.435339 0.38612 0.323325 0.391111 0.335228 0.315761 0.263778 0.202895

Figure 2: Mean hand appearances and their artifact-free Fourier transforms. Larger s-values (see eq. 4) indicate more high-
amplitude frequency components being present, suggesting better suitability for classification from background.

from fixed views, which were selected based on their differ-
ent appearances and because they can be performed easily.
A prototypical example for each posture is shown in fig. 2.

The posture closed is a flat palm with all fingers extended
and touching each other, open is the same but with fingers
spread apart. Sidepoint is a pointing posture with only the
index finger extended, seen from the thumb side. The vic-
tory or peace posture has index and middle finger extended.
The “L” posture involves an abducted thumb and extended
index finger and can be seen from the Lpalm side and the
Lback side of the hand. The grab gesture is suited to pick-
ing up coffee mugs, seen from the top, and the fist posture
is viewed from the back of the hand.

The separability of two classes depends on many factors,
including feature dimensionality and method of classifica-
tion. There is no known performance estimator for the Ada-
Boost method described above. Yet it is desirable to a pri-
ori predict the potential for successful classification of hand
appearances from background due to the detector’s com-
putationally expensive training phase. The estimator pre-
sented here is based on the intuition that appearances with
a prominent pattern can be detected more reliably than very
uniformly shaded appearances. The advantage of the esti-
mator is that it only requires a single prototypical example
of the positive class. There is no need for explicit or formal
representation of the negative class, “everything else.”

We collected up to ten training images of each of eight
hand postures from similar views and computed their mean
image (top row in fig. 2). Due to limited training data for
fist we took only one image and manually set non-skin pix-
els to a neutral grey. The areas of interest were resized and
rescaled to 25x25 pixels, see table 1. The higher-frequency
components of a Fourier transform describe the amount of
grey-level variation present in an image – exactly what we
are looking for. However, the transformation F (eq. 1) in-
troduces strong artificial frequencies, caused by the image’s
finite and discrete nature.

F (u, v) =
1

25 ∗ 25

24∑

m=0

24∑

n=0

I(m, n)e−i2π( mu
25

+ nv
25

) (1)

We therefore subtract the Fourier transform P of a neu-
trally colored 25x25-sized image patch from F . This en-
sures that frequencies resulting from image cropping are
eliminated, yielding an artifact-free difference-transform
D.

D(u, v) = log |F (u, v) − P (u, v)| , (2)
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In the last step (eq. 4), the sum of all frequency ampli-
tudes is computed, normalized by the Fourier transform’s
resolution. This sum is the sought-for estimator, giving an
indication of the amount of appearance variation present in
the image:

s = e
1

k
∗

∑
u,v

D(u,v)
. (4)

The bottom row in fig. 2 presents the postures’ artifact-
free Fourier transforms D, annotated with s, the sums of
their log amplitudes over the entire frequency spectrum.
The sums’ absolute values have limited meaning, they are
to be regarded in relation to each other. As expected after
visual inspection, the closed hand appearance has the most
amount of grey-level variation, reflected in a high ampli-
tude sum. The fist, being mostly a uniformly grey patch,
has the least amount of appearance variation, thus also a
low s-value.

In the following section, a comparison of the estimates
with actual detectors’ performances will confirm our hy-
pothesis – that appearances with larger s-values can be de-
tected more reliably. Computing s-values therefore allevi-
ates the need for the compute-intensive training of many
detectors in order to gauge their performance potentials.



4. Detector training and evaluation
This section describes the data collection, training, and eval-
uation of detectors for the six appearances with the highest
s-values. We compare their performances with the posture
“detectability” as estimated from their appearance variation,
described in the previous section. Furthermore, we optimize
training parameters, one improving training speed, the other
increasing detection performance. Lastly, the detector cho-
sen for fail-safe VBI-initialization is presented.

Figure 3: Sample areas of the six hand postures, from top to
bottom: closed, sidepoint, victory, open, Lpalm, and Lback.
They are shown in the smallest resolution necessary for de-
tection (25x25).

4.1. Data collection
We collected over 2300 images of hands of ten male and
female students’ right hands with two different digital still
cameras. The pictures were taken indoors and outdoors
with widely varying backgrounds and lighting conditions,
but without direct sunlight on the hands. The rectangular
bounding boxes of the areas containing hand posture ap-
pearances were manually marked and rotated to a standard
orientation. Figure 3 shows five examples for each of the six
postures for which we trained detectors. AdaBoost was per-
formed on one half of the hand images, error rate-validation
on the other half (in order to avoid over-training).

The rectangular areas had different but fixed aspect ra-
tios for each of the postures (Table 1). Since we wanted uni-
form template sizes for all postures for better comparability,

closed sidepoint victory open Lpalm Lback
389 331 341 455 382 433

0.6785 0.5 0.5 1.0 0.9 0.9

Table 1: The number of training images and the bounding
box ratios (width over height) for each posture. Template
size and bounding box ratio determine the template resolu-
tion along the vertical and horizontal dimensions.

this resulted in varying resolutions for the interpolation step.
For example, the posture sidepoint with a template of size
25 by 25 pixels has twice the sample density along the hor-
izontal dimension than its resolution in the vertical dimen-
sion. Similarly, during matching of each detector, different
scale factors have to be applied.

The non-cascaded detectors were trained with more than
23000 negative examples, randomly selected areas from the
pictures containing the hand images, but not intersecting the
hand areas. Again, half of them were added to the train-
ing set, the other half was used for validation. For the cas-
caded detectors, a pool of 180 random images not contain-
ing hands was scanned periodically to dynamically increase
the negative training set during training (see ref. [10] for
details).

4.2. Non-cascaded detectors
To evaluate predictor accuracy, we first built detectors with
unmodified AdaBoost, which produces a single set of weak
classifiers for each detector. In sub-section 4.4 we cover
cascaded detectors, which are composed of multiple, staged
sets of weak classifiers. Here, only the three traditional fea-
ture types (see fig. 1) were used.

The detectors were evaluated for their false positive rates
by scanning a test set of 200 images not containing hands,
some obtained from a web crawl and some taken at our
location. Note that the false positive rate is relative to all
detector evaluations, and that there are 355614 evaluations
required to scan a VGA-sized image (see sub-section 2.1).

Results: The receiver operating characteristic (ROC)
curves in fig. 4 show the results of evaluating the six de-
tectors. The posture closed fares much better than its com-
petitor hand postures, in that it achieves a higher detection
rate for a given false positive rate. This is in line with the
prediction of the spectrum-analysis estimator. The sidepoint
posture does second-best for high detection rates, but then
deviates from the prediction. We will see later however that
it comparatively does much better again for very low false
positive rates with the cascaded detector. Another predic-
tion failure can be observed for the Lback and Lpalm curves:
the more structured Lpalm appearance should achieve bet-
ter class separability. Again, the more expressive features
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Figure 4: ROC curves for all hand postures, trained on in-
tegral images with 25x25 pixel resolution. Each of the six
detectors consists of 100 weak classifiers. The x-axis is in
log scale.

in the cascaded detector actually do bring out this advan-
tage and are in line with the prediction.

4.3. Effect of template resolution
Before training detectors with more expressive, but also
more expensive feature types (on the order of two mag-
nitudes more computational effort during training), we
wanted to make sure the integration templates did not con-
tain any redundant information. Therefore, we varied the
size of the template area for the best-faring appearance,
hoping for resolution reduction without sacrificing accu-
racy. The impact of different integral image resolutions can
be seen in fig. 5.

Unsurprisingly, the finest resolution integral (35x35 pix-
els) achieves the best performance. Remember that the ob-
served image area is constant, only the sample resolution
differs. But higher resolution in the vertical dimension con-
tributes little to this improvement, as witnessed by the lower
detection rates of the 20x30 curve. On the other hand, the
30x20 curve has high resolution along the dimension that
the estimator frequency analysis showed more high ampli-
tudes for – see the bright horizontal extent in the frequency
image for the closed posture in fig. 2. This seems to enable
the detector to capitalize much more on appearance pecu-
liarities and rewards us with detection rates comparable to
the highest-resolution detector.

It is interesting to note that the detector with 30x20 tem-
plates performs better for low false positive rates, while a
20x30 resolution performs better for higher false positive
rates. We speculate that the stretch in the vertical produces
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Figure 5: ROC curves for the closed posture detector with
100 weak classifiers. The detectors with higher resolution
in the horizontal (35x35 and 30x20) outperform the other
two.

large, uniform areas that allow for easy distinction between
hands and many other appearances. The lack in horizontal
resolution however compresses away the fine finger struc-
tures that are required for separation from most other ap-
pearances.

4.4. The final detector
In this sub-section we present the final result of our re-
search, a hand detector with a very low false positive rate.
We also show that the particular choice of feature types in-
fluences the relative detectability of hand appearances.

For each posture, we trained a cascaded detector that
could select its weak classifiers from a set of four fea-
ture types instead of from only three types as were used in
ref. [10] and in section 4.2. The novel feature type is a com-
parison of four rectangular areas. During training, they can
move about relative to each other with “no strings attached,”
even partially overlapping each other, just their sizes are re-
stricted (see fig. 1). These more powerful features allow the
detector to achieve better accuracy, demonstrated in fig. 6.

Results: The relative performance of detector pairs stays
roughly the same, even though the curves are not as smooth
as with non-cascaded detectors due to the staged cascading
and the resulting evaluation method (details in Viola and
Jones’ paper [10]). Of particular interest are the left parts of
the curves since a fail-safe hand detection for vision-based
interfaces must be on the conservative side. There, the cas-
caded detectors show ROCs along the lines of the perfor-
mance predicted in section 3: closed outperforms all others,
sidepoint is second-best, and the more structured appear-
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Figure 6: ROC curves for cascaded detectors with the less
constrained feature type. Note that the scale on the y axis is
different from previous figures.

ance Lpalm now does better than the more uniform Lback.
Extrapolating from the results of this study, we sug-

gest that mostly convex appearances with internal grey-level
variation are better suited to the purpose of detection with
the rectangle feature-classification method. The open pos-
ture for example already has a lower Fourier structure value,
hinting that background noise hinders extraction of consis-
tent patterns. The detector’s accuracy confirms the difficulty
to distinguish hands from other appearances.

The final hand detector that we chose for our applica-
tion detects the closed posture. For scenarios where we
desire fast detection, we picked the parameterization that
achieved a detection rate of 92.23% with a false positive rate
of 1.01 ∗ 10−8 in the test set, or one false hit in 279 VGA-
sized frames. For most scenarios it is sufficient however to
pick a parameterization that had a detection rate of 65.80%,
but not one false positive in the test set. The high frame
rate of the algorithm almost guarantees that the posture is
detected within a few consecutive frames.

5. Summary and conclusions
Computer Vision methods for hand gesture interfaces must
surpass current performance in terms of robustness and
speed to achieve interactivity and usability. Recent ad-
vances in pattern recognition have made detection at frame
rate possible. We investigated the suitability of various hand
postures for fail-safe detection before arbitrary backgrounds
in grey-level images.

Our contributions are as follows. First, we demonstrate
the suitability of the integral-image approach to the task

of detecting hand appearances. Second, a qualitative mea-
sure is presented that amounts to an a priori estimate of
“detectability,” alleviating the need for compute-intensive
training. Third, parameters of the detection method are op-
timized, achieving significant speed and accuracy improve-
ments. Overall, this study shows how the Viola-Jones detec-
tor can achieve excellent detection rates for hand postures.
These results provide an important step towards easily de-
ployable and robust vision-based hand gesture interfaces.
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